Real interpolation of Sobolev spaces associated to a weight

نویسندگان

  • Nadine Badr
  • NADINE BADR
چکیده

We hereby study the interpolation property of Sobolev spaces of order 1 denoted by W 1 p,V , arising from Schrödinger operators with positive potential. We show that for 1 ≤ p1 < p < p2 < q0 with p > s0, W 1 p,V is a real interpolation space between W 1 p1,V and W 1 p2,V on some classes of manifolds and Lie groups. The constants s0, q0 depend on our hypotheses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract Hardy-Sobolev spaces and interpolation

Hardy-Sobolev spaces and interpolation N. Badr Institut Camille Jordan Université Claude Bernard Lyon 1 UMR du CNRS 5208 F-69622 Villeurbanne Cedex [email protected] F. Bernicot Laboratoire de Mathématiques Université de Paris-Sud UMR du CNRS 8628 F-91405 Orsay Cedex [email protected] October 19, 2010 Abstract The purpose of this work is to describe an abstract theory of Ha...

متن کامل

Notes on Limits of Sobolev Spaces and the Continuity of Interpolation Scales

We extend lemmas by Bourgain-Brezis-Mironescu (2001), and Maz’ya-Shaposhnikova (2002), on limits of Sobolev spaces, to the setting of interpolation scales. This is achieved by means of establishing the continuity of real and complex interpolation scales at the end points. A connection to extrapolation theory is developed, and a new application to limits of Sobolev scales is obtained. We also gi...

متن کامل

A scheme for interpolation by Hankel translates of a basis function

Golomb and Weinberger [1] described a variational approach to interpolation which reduced the problem to minimizing a norm in a reproducing kernel Hilbert space generated by means of a small number of data points. Later, Duchon [2] defined radial basis function interpolants as functions which minimize a suitable seminorm given by a weight in spaces of distributions closely related to Sobolev sp...

متن کامل

Real interpolation of Sobolev spaces

We prove that W 1 p is a real interpolation space between W 1 p1 and W 1 p2 for p > q0 and 1 ≤ p1 < p < p2 ≤ ∞ on some classes of manifolds and general metric spaces, where q0 depends on our hypotheses.

متن کامل

Maximal inequalities for dual Sobolev spaces W − 1 , p and applications to interpolation

We firstly describe a maximal inequality for dual Sobolev spaces W−1,p. This one corresponds to a “Sobolev version” of usual properties of the Hardy-Littlewood maximal operator in Lebesgue spaces. Even in the euclidean space, this one seems to be new and we develop arguments in the general framework of Riemannian manifold. Then we present an application to obtain interpolation results for Sobol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008